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1. Introduction 

This paper develops further a theory that the author first investigated in 1974, culminating in a paper (Bryant, 1982) 
concerning the application of the laws of thermodynamics to economic theory. Since that time the boundaries of 
knowledge have expanded and as a result some of the ideas set down in that paper require significant revision. Others 
however appear to stand the test of time and further developments are added to here. 
 
The nature of the subject requires significant proof for economists and scientists to accept that similarities between 
some thermodynamic and economic phenomena might imply more than just a passing analogy. They have however 
caught the attention of a growing band of researchers. Samuelson (1970) acknowledges that the relationships between 
pressure and volume in a thermodynamic system bear a striking similarity in terms of differentials to price and volume 
in an economic system and that the Le Chatelier Principle has various economic applications in the theory of 
constrained rationing and the theory of production. Pikler (1954) has highlighted the connections between temperature 
and the velocity of circulation of money, and Soddy (1934) has suggested that if Marx had substituted the word energy 
for labour he night have conceived an energy theory rather than a labour theory of value. Odum (1971) has developed 
the term “Embodied Energy” as totalling the energy input into a product, and more recently defined as Emergy (1998). 
Georgescu-Roegen (1979) has noted that economic systems exchange both energy and matter with their environment 
and are best represented as open thermodynamic systems. He argued that the entropy law was important. Lisman 
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(1949), Candeal et al (1999) and Smith & Foley (2002, 2004) have pointed to the similarities between utility and 
entropy. There exists a body of opinion therefore that acknowledges that links or analogies between thermodynamics 
and economics can be observed. 
 
Others, however, highlight difficulties with economic and thermodynamic connections. Hammond (2004) believes that 
the two disciplines are quite different in character and application. Söllner (1997) suggests that there is no direct link 
between thermodynamic properties and the characteristics of economic systems, and that there has been a failure of 
most attempts to produce economically interesting results, although a breakthrough cannot be ruled out. Sousa & 
Domingos (2005), while noting a relationship between utility and entropy believe that utility does not obey a 
conservation law as energy does, and equilibrium theory cannot be used to study irreversible processes. They argue that 
economic theory considers a circular flow between households and firms without considering the one-way flow that 
begins with resources and ends with waste. Patterson (1998), Costanza (1989) and Hannon (1989) all focus on the 
problem of trying to solve the ‘mixed units’ problem, commensurating dissimilar components. 
 
At another level, the human race is a product of the environment and the biological systems from which it evolved, and 
the means by which it develops are likely to reflect the ways in which nature and energy systems operate. At the 
simplest level the fundamental principle guiding the kinetics of reactions between chemical substances is the Le 
Chatelier Principle which states: “If a change occurs in one of the factors under which a system is equilibrium, then the 
system will tend to adjust itself so as to annul as far as possible the effects of that change”.  Such reactions obey the 
laws of thermodynamics, in terms of heat production/consumption and the change in entropy arising. At a higher level 
of entity, living organisms are composed of complex chemical compounds, but made up chiefly of oxygen, hydrogen, 
nitrogen and carbon, all of which can exist as gases (the last with hydrogen or oxygen). Goldberg et al (1993-1999) 
have collated thermodynamic data on enzyme-catalysed reactions.  Moving still further upwards, Schneider (1987) has 
pointed to Schrödinger’s ‘order from disorder’ premise (1944), which was an attempt to link biology with the theorems 
of thermodynamics, whereby a living organism maintains itself stationary at a fairly high level of orderliness (low level 
of entropy) by continually sucking orderliness from its environment. Schneider and Kay (1992, 1995) state that life can 
be viewed as a far-from-equilibrium, dissipative structure, that maintains its local level of organisation at the expense of 
producing entropy in the environment. Successful species are those that funnel energy into their own production and 
reproduction and contribute to autocatalytic processes thereby increasing the total dissipation of the ecosystem.  
 
While acknowledging the difficulties concerning the construction of analogues it is, nevertheless, not a far-flung idea to 
propose that some economic principles may have connections with and reflect some natural phenomena and the laws of 
thermodynamics.  
 

 

2. Stock and Flow Models 

2.1 Development 

Economic systems can be represented as complex open interconnecting systems of stocks and flow processes carrying 
economic value, from resources through to production, distribution and consumption. The principle applies also to 
holdings in the economic system such as money and stock markets. Some processes involve multiple stock stages, and 
some can be virtually instantaneous before value is passed on to the next stage. Our model is likely to have the ability 
for price to go up or down, irrespective of the embodied productive content of any product in the system, however the 
latter may be measured, be it set against a monetary standard, or other yardsticks such as labour and emergy. 
 
In the physical world, gases can absorb energy from a heat source with a higher temperature level, or by being 
compressed, raising their internal energy, resulting in a rise in temperature. To examine the characteristics of a gas in 
more detail recourse is made to the kinetic theory of gases.  
 
It might be argued at this point, that while even a small volume of a gas contains very large numbers of molecules, 
homogenous and at first glance evenly dispersed (Avogadro’s or Loschmidt’s number indicates 6 x 1023 in just a 
thimbleful), some economic systems by contrast can be composed of just a few different items, and unevenly dispersed. 
Clearly relationships derived from a theory applied to a small system might be significantly clouded by the problems of 
small-sample statistics. But the counter arguments are that many economic systems and markets are quite large and the 
problems of small sample statistics would not then apply, and that economics take advantage of a human invention 
called money, a convenient commodity/medium of exchange with the property of linking non-homogenous economic 
factors together, so that they effectively work in a homogenous fashion. 
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Real gases are imperfect, and their properties can diverge from a model of an ideal gas. Scientists take account of this 
fact by modifying the formulae arising from the notion of an ideal gas (such as the ‘compressibility factor’ and Van del 
Waal’s equation) to enable thermodynamic principles to be applied more accurately; just as economists develop 
econometric and statistical models encompassing a number of factors to explain the variations in the real world that 
they see.  
 
Imagine an ideal gas made up of a number N of molecules, which are perfectly elastic and are busy moving about 
colliding with each other exchanging kinetic energy. The relationship of the gas with the outside world at the system 
boundary is that it is contained in a volume V resulting in the gas exerting a pressure P on the walls of the system. If, 
through the application of heat, the gas molecules are made to vibrate and move about faster, they increase their rate of 
exchange of kinetic energy and the gas accumulates internal energy resulting in a temperature rise T, with pressure and 
volume potentially increasing too. The relationship between the factors is given by the ideal gas equation: 
 

NkTPV= ...............................2.1 

Where k is called the Boltzmann Constant (Ludwig Boltzmann 1844-1906). 
 
An equation with a similar structure to equation (2.1) can be constructed for an economic system. Imagine a system 
involving a number N of ‘monetary carriers or holders of value’, equivalent in size to units of currency. Each carrier or 
holder can carry or hold a constant amount of embodied value k, which we will call the Monetary Constant, not 
dependent on price or volume, and usually given the numerical value 1 if a currency. For the time being, we put aside 
the problem of what standard the monetary constant k is measured against, i.e. energy, material content, labour man-
hours, gold or any entity that could be regarded as a medium of exchange. It is enough for the moment to assume that 
the result is acceptable to the parties in an economic system; otherwise they would not willingly trade with each other. 
The relationship of the system with the outside world is that the value held by carriers or holders can be exchanged for 
goods and services at the boundary of the system at price P and volume V over a period of time, according to an Index 
(or a degree of a scale) of Trading Value T with which they can do this over that period. If they could increase their 
index of trading value T over the same period, then the number of times the monetary units are re-cycled and used again 
goes up, and they could increase the value of exchange of goods over the period. Thus the relationship of the variables 
is given by the ideal economic equation: 
 

NkTPV= ...............................2.2 

The index of trading value T has similarities with and is related to turnover, cost and added value, though the distinction 
is that while turnover, cost and added value can be defined in terms of a scale of value, rising or falling in an identical 
fashion to our index of trading value T, they are not technically the same as T, unless they are divided through by Nk.  
 
The plot of price versus volume at Figure 1 indicates that for a given index of trading value T the carriers could carry 
more or less products with lower or higher prices, and a change in trading value index T can give rise to a change in 
volume V, a change in price P or both. 
 
It is important to stress that the index of trading value T so described here is one based on value, and not volume. If 
value, equal to price P multiplied by volume V, can vary on one side of the equation, then on the other side some of the 
factors must be able to vary as well. Of these the embodied value of the monetary constant k that can be carried or held 
by a carrier, although inherently a value, is a nominal value and is deemed to be constant. It is the same whether trading 
occurs or not. A £ of currency is still a £ of currency. A share with a nominal value of £1 is still just that. A grain of 
wheat (if wheat were regarded as a possible means of exchange) is still a grain of wheat, whether or not it is traded. As 
it is possible that the number N of monetary carriers of value in a particular system configuration may be fixed (e.g. 
shares in issue), then the index of trading value T must be able to embody both changes in volume and price in order to 
make both sides of the equation compatible with one another.   
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Figure 1  Price, volume and the index of trading value 
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The structure of the ideal economic equation can be clarified further by reference to dimensional analysis. In a 
thermodynamic system, at the boundary, pressure P is measured by force F per unit of area (length x length = L2) on 
which it acts (i.e. F x L-2), and energy J is a product of force x distance moved (i.e. F x L). Thus pressure P is 
equivalent to energy J per unit of volume (i.e. J x L-3). The Boltzmann constant k is defined as energy (J) per molecule 
per degree of temperature (T). Therefore restating equation (2.1) in simplified dimensional terms we have: 
 

( ) T
NT
JNL

L
J

×





×=×






 3

3
..........................…......2.3 

Similarly for an economic system, at the boundary, in dimensional terms price P is measured as value J per volume V, 
and the monetary constant k is measured as value J per carrier per index (or degree) of trading value T. Hence re-
stating equation (2.2) we have: 
 

( ) T
NT
JNV

V
J

×





×=×






 ......................................2.4 

Thus the formats of the ideal gas equation and the ideal economic equation outlined so far are similar, with a defined 
equivalence; pressure P with price per unit, volume V with units of output/consumption, the number of molecules of 
gas N with the number of monetary carriers or holders of value, temperature T with the index of trading value, and the 
Boltzmann constant k with the monetary constant per unit of carrier and index (degree) of trading value. The analogy 
suggests that value in an economic system might have some equivalence to heat content in a thermodynamic system. 
 
 
 
2.2  Simple  Models 
 
We now turn to describe some simple models to illustrate the preceding principles. For the moment we leave out the 
thermodynamic analysis, which we will examine at a later section. 
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2.2.1 Money Stock 
 
The relationship of the money stock to output in an economy has been widely researched and, as noted earlier, Pikler 
(1954) has pointed to the connections between temperature and the velocity of circulation. The format of the money 
stock model is identical in structure to that developed in equation (2.2): 
 

[ ] [ ]moneymoney NkTPV = ...................................2.5 

Where PV represents price level and volume output in an economy, N the number of notes, deposits, and other money 
instruments in circulation, k the nominal amount of value that each note is deemed to carry, and T is the velocity of 
circulation (equating to the index of trading value). By definition money is a homogenous commodity and moves in the 
opposite direction to other economic factors such as labour, materials and output. A change in the stock of money, not 
accompanied by an offsetting change in volume output, could result in changes in both the index of trading value and 
prices in an economy.  
 
 
2.2.2 Share Stock 
 
The share stock model is similar to that of money. If it is assumed that such shares are tradable on a market and that the 
number of shares in existence is constant, then the price and volume of shares traded PV per period of time is equal to 
the number of shares N in issue multiplied by the nominal value k (which is fixed) multiplied by the turnover rate T 
(equating to the index of trading value): 
 

[ ] [ ]shareshare NkTPV = ........................................2.6 

The product Nk does not necessarily reflect the value of a corporation perceived by a market, as the latter is reflected in 
the index of trading value T. A change in future cash flows perceived by the market to arise from management 
decisions and corporate performance will reflect in a change in the index of trading value T, which will in turn have an 
effect on trading volume V and price P thereof. A corporation issuing new shares can effect a change in the value of N. 
The extent to which this reflects the perceived underlying future value of the corporation will determine any associated 
changes in the index of trading value T, volume V and price P. 
 
 
2.2.3 Production 
 
A production stock has items going into or out of it at the boundary over time, respectively arising from a previous 
production process, or proceeding on to a following process. Value PV comes into the stock, and leaves at the other end 
over a time interval. Carriers of value (monetary units) proceed in the opposite direction, each with a nominal amount k. 
The number of carriers of value N available to the system is equal to the number of money units available to fund the 
operation. In a modern economy, a corporation without access to a supply of money (upfront, from a bank, from own 
resources or on credit) cannot carry out a process; enabling it to fund expenditure on materials and services while 
waiting for income to come in. The index of trading value T is therefore equal to the number of times the money units 
available to the system are turned over during the time interval during which PV crosses the boundary. Thus: 
 

[ ] [ ]prodprod NkTPV = ........................................2.7 

In the equation, with the exception of k, all of the other factors can vary. Price could go up or down for speculative 
reasons or if markets had declined resulting in a factory being left with stock having to be sold at knockdown prices. An 
appropriate change in T occurs to balance out a price change. Volume input and output might go up or down according 
to changes in requirements and stock-holding policy, and the number of money units N available to fund an operation 
can be influenced by bank credit policy. Efficient users of money are able to turn it over at a high rate with a consequent 
high level of T. 
 
A more simplified presentation of the above equation for a production process is to divide volume V by N, to give a 
Specific Volume v per unit of currency available to the operation: 
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[ ] [ ]prodprod kTPv = .............................................2.8 

Thus for a unit of currency, a given level of specific output Pv is equated to the index of trading value T; equivalent to 
turnover per unit of currency turned over.  
 
Production processes are often grouped together or connected to one another in a flow process. The above principle still 
applies to throughput of output, wage and material costs per unit of currency used to fund the operation. 
 
 
2.2.4 Consumption 
 
The consumer model is similar in construction to the production one above. Thus PV represents income and 
expenditure, and T the number of time consumers turn over their holdings of monetary assets N in relation to income 
and expenditure.  

[ ] [ ]conscons NkTPV = ................................................2.9 

As with production, a more simplified representation of the above equation for a consumption process is to divide 
volume V by N, to give a Specific Volume v per unit of currency available to the operation: 
 

[ ] [ ]conscons kTPv = ...................................................2.10 
 
While economic theory often defines the consumer function as being the opposite of production, consuming the units 
produced by production, the author tends to the view that the consumer or personal sector too is a form of production 
function, since labour units are expended (deaths/proportion of lifetime work) in the production of new labour units 
(births and upbringing). A discussion of the structure is given at a later point in this paper. 
 
 
 
 
3. Thermodynamic Principles 
  
In this section we develop economic equivalents to the First and Second Laws of Thermodynamics, and examine the 
dynamics of the main processes encountered and as applied to an economic system. 
 
 
3.1 First Law of Thermodynamics 
 
The First Law is generally stated as: 
 
     )( 12 UUWQ −=− ..................................................3.1 

Where Q is the heat passing across the boundary of the system, W is the work done (or consumed) in the system and 
(U2 – U1) is the change in internal energy arising between states 1 and 2, which is a function of the change in 
temperature. In differential form the equation is commonly written as: 
 

   dUdWdQ =− .........................................................3.2 

In our economic system dQ is that value being put into or taken out of the system not represented by real output, such 
as a scarcity or abundance, or a write off of an asset, or an investor putting new money into an existing market that is 
not represented by the underlying productive value. It is not in the shape of embodied productive content and does not 
represent volume of throughput gained or lost. We shall call this the Entropic Value added or taken out. 
 
The Work Done dW is defined as real embodied productive content added to or leaving a system by virtue of a volume 
change, and is written as PdV [or Pdv if analysing on a specific volume basis per carrier of value, as per equation 
(2.10)]; being equal to price multiplied by change in volume, and would equate to part or all of real turnover, added 
value and costs. It does not incorporate value such as speculative or scarcity value. Thus real production output, labour 
consumption or consumption of raw materials would represent changes in work done.  
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In our economic system we shall call the internal energy U ‘Internal Value’, the differential dU of which is equal to the 
addition of work done/consumed dW and entropic value dQ entering or leaving the system, depending upon the 
directions of flow. The concept of internal value is one that can incorporate both real productive content and entropic 
value, and has similarities to the concept of ‘utility’ developed by economists. This analogy will be developed at a later 
point in this paper. In our economic system the change in internal value dU is a function of the change in the index (or 
degree) of trading value dT which, from the chart at figure (2.1), is related to changes in price and volume.  
 
 
3.2 Second Law of Thermodynamics 
 
In a closed reversible thermodynamic system, there exists a property such that a change in its value between two states 
is equal to: 

∫=−
2

112 T
dQSS ...................................................3.3 

Or in differential form: 

revT
dQdS 






= ..............................................…...3.4 

 
The property S of a physical system is called Entropy. In thermodynamics, entropy is a measure of the amount of 
energy in a physical system that cannot be used to do work. In statistical mechanics it is defined as a measure of the 
probability that a system would be in such a state, which is usually referred to as the "disorder" or "randomness" present 
in a system. Given that systems are not in general reversible then, following whatever means are applied to return a 
system to its starting point, the net change in cycle entropy is commonly stated as: 

0≥∫ T
dQ

..............................................3.5 

 
It is impossible to construct a system which will operate in a cycle, extract heat from a reservoir and do an equivalent 
amount of work on the surroundings. Entropy tends to rise. 
 
By substitution of equation (3.4) into equation (3.2) and inserting the term for the work done dW = PdV we have: 
 

PdVdUTdS += .............................3.6 

Equation (3.6) sets out the general relations between the properties and, when integrated, gives the change in entropy 
occurring between any two equilibrium states, regardless of whether any particular process joining them is carried out 
reversibly or not.  
 
In our economic system therefore, entropy change is defined as a measure of the amount of value per index of trading 
value that is not available in a particular economic process for conversion into real productive content and work done.  
 
A series of economic processes is now examined to develop what these concepts mean in economic terms. The key 
relationships are illustrated in Figure 2. 
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Figure 2  Price – volume relationships 
 

 
 
3.3 Constant Volume 
 
By definition, a constant volume process is one involving no change in volume V, and the work done PdV put in or 
taken out of the economic system is therefore zero. Thus entropic value dQ entering or leaving the system must be 
balanced by an equal change in the internal value dU of the system. Hence equations (3.2) and (3.6) become: 
 

 TdSdUdQ == ...................................3.7 

Thus the change in internal value dU is then reflected as a change in entropy of the system dS. By differentiating the 
ideal economic equation PV = NkT we could write: 
 

NkdTVdPPdV =+ ……………...……3.8 
 

And remembering in this case that volume output is constant, then: 
 

NkdTVdP=  

Hence by substituting in PV = NkT again we have: 

T
dT

P
dP

= .....................................................3.9 

And 

1

2

1

2

T
T

P
P
= ...................................…….….....3.10 

 
Thus the price of output in the process changes exactly in proportion to the change in the index of trading value dT 
arising from the input or output of entropic value dQ to and from the system. Nothing has been done to the items in the 
system, no work has been done; they are just perceived by the players in the system as having more or less value, by 
virtue of the entropic value dQ introduced or taken away. Economists might indicate that a change in price/value of this 
kind could arise from changes in scarcity or abundance.  
 
Now in order to compute the change in entropy associated with this process, we have first to set out a relationship 
between the change in the internal value and the change in the index of trading value. We could write: 
 

dTNCdU v= ......................................................3.11 

V=Constant 
PV=Constant 

PV n =Constant 

Price P 

Volume V 

P=Constant 
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Where Cv is a constant (for an ‘ideal’ economic system), which we shall call the Specific Value at constant volume. 
Thus the change in internal value per carrier goes up in proportion to the change in the index of trading value.  
 
The thermodynamic analogy here is the specific heat at constant volume, being the heat required to raise the 
temperature of a unit of a gas system by one degree of a scale of temperature. The specific heat of a gas is commonly 
computed in thermodynamics terms by reference to either unit mass or quantity. The usual measure of the latter is per 
mole. For a monatomic ideal gas the specific heat at constant volume Cv = (3/2) NAk, where NA is Avogadro’s Number. 
Thus specific heat is measured as heat value relating to a multiple of numbers of molecules. 
 
In this paper the specific value at constant volume Cv in an economic system is definedas the amount of value dU 
required to be introduced to the internal value to change the index of trading value by dT, per carrier of value (i.e.not a 
multiple of units as with gases), but without any net change in volume in or out of the system. It is a measure of ability 
to store the entropic value that is introduced by dQ. In economic terms utility has risen or declined, but nothing of 
substance has been added or taken away. 
 
It might be supposed that the value Cv for an economic process would be a constant. However, in gas systems, 
according to the kinetic theory of gases, the specific heat at constant volume is actually dependent upon the complexity 
of the gas molecules. A simple molecule requires less energy to increase its momentum and raise its temperature, than 
does a complex one, according to the number of ‘degrees of freedom’ – dimensional, rotational and vibrational energies 
(quantum mechanics introduces yet further degrees of freedom, those of electronic and nuclear). And in reverse, a 
complex molecule releases more energy for a given drop in temperature than does a simple molecule. The question 
therefore arises therefore as to whether such a variation is possible in an economic system. 
 
The answer proposed in this paper is that such variation, if it occurs, is likely to depend on the ‘complexity’ of the 
carriers of value in terms of what they do and the time over which their value can be abstracted. For example, money in 
the form of cash clearly has value as a means of exchange, but has little other use beyond instantaneous conversion to 
and from goods and services. It might be deemed to have a short term value of Cv. By contrast, goods that are produced 
and consumed have value that can only be released over time. Last, humankind also places a value on goods with 
aesthetic properties that are rare and deemed to have value over a very long period. In economic terms ‘degree of value’ 
might be a better description of the property than ‘degree of freedom’. Monetary examples of ‘degrees of value’ might 
be represented by cash (degree 1), versus gilts and income generating securities (degree 2) and gold (degree 3). While it 
is an open question as to whether a variation in Cv might occur, the safe option is to allow for such a possibility in 
developing the analysis. Thus our specific value at constant volume Cv might be deemed to be proportional to the 
embodied value of the monetary constant k of a given carrier of value, according to the ‘degrees of value’ attached 
thereto, and the value necessary to change the index of trading value by dT. Hence in our constant volume economic 
system we could write: 
 

 kCv ω= .....................................……..............3.12 

Where ω might be called the Value Capacity Coefficient.  
 
 
By combining equations (3.4), (3.7), (3.11) and (3.12), the entropy change in the economic system is then written as: 

       
revrev

v
revrev T

dTNk
T
dTNC

T
dU

T
dQdS 






=






=






=






= ω .................3.13 

Thence by integrating we have (including for non-reversible systems): 









=−

1

2
12 ln

T
T

NkSS ω ...............................………..…....3.14 

And by substituting in equation (3.10) we have:  









=−

1

2
12 ln

P
P

NkSS ω ............................................…......3.15 
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Thus stating the change in entropy in terms of the value capacity coefficient ω and changes in the index of trading value 
and the price.  

In differential form equations (3.14) and (3.15) can be written as: 

       
revrev T

dTNk
P

dPNkdS 





=






= ωω  ..............……………....3.16 

Thus entropy change in the constant volume process is proportional to the percent change in price or index of trading 
value. 
 
 
 
3.4 Constant Price 
 
This process is suitable for production or consumption processes where new units come into the system or go out the 
other end. By definition, a constant price process is one involving a change in volume, but no change in price. Work 
done is not therefore zero, and any entropic value dQ entering or leaving the system must equate to the work done dW 
plus the change in the internal value dU of the system. Hence equation (3.2) is stated as: 
 

dUdWdQ += ..............................................3.17 
or 

dUPVddQ += )( ..........................................3.18 

Now in differential form, the ideal equation PV=NkT can be written as: 

   NkdTVdpPdVPVd =+=)(  

But since in this process price remains constant, VdP is zero, we can write: 

NkdTPdV = ...................................................3.19 

Hence by combining equations (3.11), (3.18) and (3.19): 

dTNCPdVdQ v+=  

       dTNCNkdT v+=  

       dTNC p= ...................................................3.20 

Where Cp = (Cv + k) is a constant, which we shall call the Specific Value at constant price, being analogous to the 
specific heat at constant pressure in a thermodynamic system, in a similar manner to the constant volume process 
discussed above. 
 
It will be recalled also from equation (3.12) that the specific value at constant volume using our value capacity 
coefficient was Cv  = ωk; thence we could write for a constant price process: 
 

 kkC p +=ω  

       ( )k1+= ω ...........................................…....3.21 

The higher value of the specific value at constant price, compared to that of the specific value at constant volume, 
recognises that in adding value to the internal value U, volume movement of units takes place. Additional value has 
been stored, i.e. not only the entropic value ωk (equation 3.16), but also real value k from production/consumption. 
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Now by substituting the ideal equation PV = NkT back into equation (3.19) and remembering that price is constant we 
have: 

T
dT

V
dV

= ..............................………................3.22 

And 

1

2

1

2

T
T

V
V
= ...................................………...............3.23 

Thus the volume of input or output goes up exactly in proportion to the change in the index of trading value; which is 
what one might expect for a constant price process. A change in the index of trading value finds its way wholly into a 
change in volume, and not price. 
 
Similarly by combining equations (3.4), (3.20) and (3.21), the entropy gain from the system is written as: 
 

revrev
p

rev T
dTNk

T
dTNC

T
dQdS 






+=






=






= )1(ω …….....3.24 

Thence by integrating we have for a constant price process (including for non-reversible systems): 
 









+=−

1

2
12 ln)1(

T
T

NkSS ω ............................................3.25 

And by substituting in equation (3.23) we have:  









+=−

1

2
12 ln)1(

V
V

NkSS ω ............................................3.26 

Thus stating the change in entropy for the constant price process in terms of the change in the index of trading value, 
and in terms of the associated change in volume. 
 
 
3.5 Iso-trading  
 
As its name suggests, the iso-trading model is one where no change in the index of trading value occurs, that is dT = 0. 
The equivalent thermodynamic process is the isothermal case where temperature change is zero. In mathematical terms 
we can write: 

CPV = ...........................................................3.27 

Where C is a constant and price varies inversely with volume. This formula has common usage in standard textbooks on 
economic theory, and the shape of the curve is depicted at figures (2.1) and (3.1) of this paper. 
 
Clearly the formula does not have use in stocks where changes in effective trading T takes place, and because economic 
processes are mostly one-way, it is not possible to change one unit of volume with one price into another unit with 
another price, except via the process of conversion – that is the production process when inputs are consumed and 
outputs produced, which we will examine later in this paper. Outside conversion/production processes, however, the 
model may also have use in the theory of consumer choice. In our model, since T is constant, there is no change in 
Internal Value dU, and therefore any change in work done dW is reflected in a change in entropic value dQ. Thus: 
 

PdVdWdQ == ..........................................3.28 

And from the ideal equation PV=NkT in differential form: 
 

0=+VdPPdV  

Hence:  
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V
dV

P
dP

−= .................................................3.29 

Indicating, as would be expected, that change in price is equal and opposite to a change in volume.  
 
By substituting equation (3.28) into equation (3.4) for the entropy change we have: 
 

( )rev
rev

PdV
TT

dQdS 1
=






=  

And by substituting in PV=NkT, we have: 

revV
dVNkdS 






= ......................................................3.30 

And 

revP
dPNkdS 






−= .....................................................3.31 

Hence by integrating: 









=−

1

2
12 ln

V
V

NkSS ................................................3.32 

And: 









=−

2

1
12 ln

P
P

NkSS ..............................................3.33 

 
Thus we have a logarithmic relationship of entropy change with change in volume and an equal and opposite 
logarithmic relation with change in price.  
 
 
 
 
3.6 Entropic Change and Marginal Utility 
 
From the analyses of the constant volume, constant price and iso-trading processes so far highlighted, it is possible to 
investigate relationships between entropy change and utility theory. For example equation (3.30), the entropic gain for 
the iso-trading process, could be re-written as: 
 

revV
Nk

dV
dS







=

1  

And by substituting in PV=NkT we have: 
 

1=














rev
P

dV
TdS

…………………………………..3.34 

Thus the marginal change in entropic value TdS (equals dQ) with respect to volume change, divided by price, is equal 
to 1, which is a constant. 
 
In economics, the simple utility theory postulates that at consumer equilibrium the marginal utility of one good divided 
by its price is equal to the marginal utility of another good divided by its price – the Law of Diminishing Marginal 
Utility. Thus the inference of the thermodynamic analysis of the above iso-trading process and equation (3.34) is that 
marginal utility might be related to marginal entropic value with respect to volume (TdS/dV).  
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However this conclusion cannot be wholly derived from the other two processes, since utility is not just related to the 
entropic element, but is also related to the embodied productive content – both of which add to the internal value U. But 
of course since for the iso-trading process there is by definition no change in internal value; changes in volume being 
met only by changes in price, a connection between change in entropic value TdS and change in utility might be held in 
this case. 
 
Turning to the other two processes, in respect of the constant volume process, for N carriers of value we can write from 
equation (3.16): 

revP
dPNkdS 






=ω  

And substituting in PV=NkT, we have: 
 

ω=














rev
V

dP
TdS

………………………………...…..3.35 

Which says that for a constant volume process the marginal entropic value with respect to change in price (TdS/dP), 
divided by volume, is equal to ω, which is a constant. 
 
Likewise, for the constant price process, for N carriers of value we can write from equation (3.26): 
 

revV
dVNkdS 






+= )1(ω  

 
And substituting in the ideal equation PV=NkT, we have: 
 

( )1+=













ω

rev
P

dV
TdS

………………………………3.36 

Thus the marginal entropic value with respect to volume change (TdS/dV) divided by price, is equal to a constant 
(ω+1), which is similar to the conclusion for the iso-trading process except that the constant is greater than 1, (if ω>0).  
 
From all of the above analyses, the inference is that change in utility value, in an economic sense, may be related to 
change in internal value dU, which is also a function of change in entropic value TdS and work done dW, though the 
relationship depends upon the process examined. This conclusion is different that that obtained by Candeal (1999) and 
Smith & Foley (2002, 2004) who related utility only to entropy. 
 
 
3.7 Polytropic Process 
 
A more general type of relationship of price against volume found in economic processes is of the form: 
 

CPV n = ......................................…..…….…......3.37 

Where n is a constant known as the elastic index. This is easily confirmed by differentiating the equation to give: 







−=

V
dVn

P
dP ……………………….………………..3.38 

Supply and demand curves are often drawn to this formula with demand curves having a positive value of n and supply 
curves a negative value. In thermodynamics such processes are called Polytropic processes and we shall use the same 
term here. It will noted that when n = 0 the relationship reduces to a constant price process, and when n = ∞ it reduces 
to a constant volume one. 
 
Now, referring back to our formula for the work done/released in producing or consuming output, we have: 
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dV
V
CPdVW n∫ ∫==

2

1

2

1

 

Thence by integration and substitution we get: 
 









−
−

=
n

VPVP
W

1
1122 .................................................3.39 

 
And by further substitution of the ideal equation PV=NkT: 
 

( )121
TT

n
NkW −







−

= ...............................................3.40 

 
Substituting the above back into our equation for the First Law relating entropic value to work done and the change in 
internal value we get: 

( ) 12121
UUTT

n
NkQ −=−







−

− .................................3.41 

 
And re-arranging and substituting in the equation for the internal value: 
 

( ) ( )1212 1
TT

n
NkTTNCQ v −







−

+−=  

    ( )121
1 TT

n
Nk −








−
+= ω ......................................3.42 

 
Finally we have an expression for the change in entropy: 
 

















−
+=−

1

2
12 ln

1
1

T
T

n
NkSS ω   .......................3.43 

 
This equation can also be re-stated in terms of changes in price and changes in volume, by substituting in PVn = C, 
although we will not clutter up the picture here. There are nevertheless three expressions relating volume, price and the 
index of trading value: 

n

V
V

P
P









=

2

1

1

2 ........................….....................3.44 

n
n

P
P

T
T

1

1

2

1

2

−









= .................................…..........3.45 

n

V
V

T
T

−









=

1

1

2

1

2 ....................................….......3.46 

 
 
3.8 Isentropic Process 
 
An important special case of the Polytropic process is that of the Isentropic case, where entropy change is zero, with no 
entropic value Q entering or leaving the system. Thus, in differential form the work done dW is equal to the change in 
internal value dU: 
 

  dTNCdUdW v−=−= ......................................3.47 
 

Substituting in PdV for dW and setting alongside the ideal equation PV=NkT we have: 
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dTNCPdV v−=              (First Law) 

VdPPdVNkdT +=       (Ideal Equation) 
 

Eliminating dT from these equations and re-arranging we obtain: 
 

VdP
k

CPdV
k

C vv 





+






 += 10  

And since Cp = Cv  + k, this reduces to: 
 

VdPCPdVC vp +=0  
 
By writing Cp/Cv  = γ = (ω+1)/ω this then becomes: 
 

0=+
P

dP
V
dVγ  

And finally by integrating we get: 
 

CPV =γ .............................................................3.48 
 

Which is another form of equation (3.38) for the Polytropic process, with the elastic index γ = (ω+1)/ω being a 
function of the value capacity coefficient ω. 
 
We can therefore substitute in γ for n to arrive at the isentropic relationships between volume, price and the index of 
trading: 
 

γ









=

2

1

1

2

V
V

P
P ............................................3.49 

γ
γ 1

1

2

1

2

−









=

P
P

T
T ..........................................3.50 

γ−









=

1

1

2

1

2

V
V

T
T ..........................................3.51 

 
Since by definition there is no change in entropy in this process, all value changes to the internal value of the system 
involve only changes in real volume and embodied productive content, with no change in entropic value. 
 

3.9 Process Entropy 

The equations for entropic gain in the preceding processes examined all have a common form, and can all be derived 
from the entropic gain for the Polytropic process. It will be recalled from equation (3.43) that the expression for the 
change in entropy was derived as: 

















−
+=−

1

2
12 ln

1
1

T
T

n
NkSS ω    

 
This can be re-stated as: 









=−

1

2
12 ln

T
T

NkSS λ .....................................3.52 

Where 

  







−
+=

n1
1ωλ ....................................…..........3.53 

 
May be called the Entropic Index. 



 16 

 
Hence the entropy change for a given process is related to the change in the index of trading value, and the value of the 
entropic index λ. The latter is a function only of the value capacity coefficient ω and of the elastic index n of the 
process. Figure 3 shows how the entropic index varies with changes in the elastic index. 
 
At the point where the elastic index n is equal to (ω+1)/ω), the entropic index becomes zero with no gain in entropy 
occurring. This equates to the isentropic case (section 3.8). At the vertical line where the elastic index n is equal to 1, 
we have the iso-trading process (section 3.5) where the entropy gain is not related to change in trading, but only to 
changes in price and volume. At the horizontal line where the entropic index is equal to ω we have the constant volume 
process (section 3.3). Last, we have that the entropic index λ for a constant price process is equal to (ω+1) (Section 
3.4), which implies an elastic index n equal to zero, with price not a function of volume.  
 

Figure 3  Relationship between entropic index and elastic index 

 

 

 

 

 

 

 

 

 

 

 

 

4. Production and the Trade Cycle 

The stage has nearly been set where some of the concepts and relationships previously developed can be put together to 
form a model of an economic cycle. Figure 4 sets out the general format of a simplified capital – labour economy, with 
the corporate sector separated out from the personal sector. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entropic Index λ 

Constant Volume 
    Cv /R = ω 

Constant Price 
Cp /R = (ω+1) 

0 

Entropic Index 0 at n = (ω+1)/ω 

Elastic Index n 

Iso-trading PV = C 

n=1 
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Figure 4  A simple economic system 
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4.1 Equilibrium & Disequilibrium  
 
The theory developed to show the dynamic processes is based on the Le Chatelier Principle, stated at the beginning of 
this paper.  It is not asserted that a system will attain equilibrium, only that it will continually seek to proceed to such a 
position. In fact the system will not work without being in a state of disequilibrium. 
 
First, our analysis is restricted to an economic system involving only a specified, fixed process. By this is meant that, 
for example, to produce a product, specified amounts of capital (plant depreciation), labour (proportion of lifetime 
output) and materials are required, and no other combination, and which are brought together under a specified 
production process. If there is a scarcity such that a substitute is found, then the substitute is another product made by 
another process/system, and outside the dynamics of the system under analysis. Likewise if a different mix of inputs can 
be engineered by investment in plant and management, we are again discussing another system. It is only the dynamics 
of a fixed system that is being examined, and not feedback mechanisms to change the choice of system. 
 
 
In gas/chemical combustion reactions such fixed arrangements are normal, there being only one configuration of inputs 
and outputs. For example, two molecules of carbon monoxide combust with one molecule of oxygen to form two 
molecules of carbon dioxide. There is no other combination. In a gas system with an inexact volume mixture, if a 
reaction proceeds so that some inputs are completely used up, there is likely to be some other inputs left over.  
 
There is therefore a difference between human and chemical systems, in that humankind can continually modify its 
economic system in order to change the objectives and benefits – a complex feedback mechanism. Such mechanisms 
are outside the scope of this paper, but clearly could be the subject of future research. 
 
Imagine a specific production system, whereby to form x units of a particular output product G (not including capital 
plant replacement/investment), requires a units of capital stock K (depreciation), b units of labour L (wage) and c units 
of resource B. y units of residue D are also produced. A surplus also likely occurs that is primarily used to purchase 
replacement capital stock and meet capital interest, tax and dividend payments. For the sake of analysis, we will assume 
this to be fixed in size at z units of capital stock K. Any surplus after this constitutes potential for forward growth. We 
could write: 
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zKyDxGcBbLaK ++⇔++ ............................4.1 

Where the double arrow signifies that the process is not necessarily a complete one; it depends upon the actual relative 
concentrations of each. Thus if output G cannot be passed on to buyers from another system, if there is a labour 
shortage or a scarcity of materials from a late delivered stock or a resource depletion, or capital plant cannot be operated 
at higher level, then there will be a reduced economic incentive to promote the forward path in the system under 
consideration.  
 
In respect of the personal sector, it might be postulated that a similar format could be considered; i.e. a units of labour L 
being consumed (proportion of lifetime value), resulting in b units of labour L (wage), which in turn can be spent on x 
units of labour reproduction L, y units of capital assets K and z units of consumption D. Consumers are generally much 
smaller entities than production units, and their choices are more diverse. It is possible that the number of units for each 
factor is not nearly as fixed as with the corporate production process, and the model may be more complex. People can 
choose to have more or less children, spend more or less on consumption (vital or less vital) and to invest more or less 
in fixed assets with varying depreciation rates. There is also a significant entropy factor to take into consideration in that 
people can choose to discard the productive content of some of their possessions earlier than their useful lives, resulting 
in an increase in entropy and the accumulation of some un-recyclable waste. The author believes that more research is 
relevant, particularly in the field of consumer choice and feed-back mechanisms, in order to build a better personal 
sector model. 
 
In order to represent the work released by the consumption of capital, labour and resources and converted into product, 
we turn another thermodynamic property, known as the Helmholtz free energy function F (named after the German 
physicist Hermann von Helmholtz 1821 – 1894). This function is a common concept in thermodynamic analysis of 
chemical reactions, and expresses the total amount of energy which can be used up or released during a chemical 
reaction to equilibrium. It has the formula: 
 

    TSUF −=  

TdsSdTdUdF −−= ……………………….…………4.2 

A change in free energy is also equivalent to the change in Exergy of the system when proceeding to equilibrium. In 
economic terms the free energy might better be described as Free Value F, being the amount of useful value that can be 
used up or released during a reaction between inputs such as materials, labour, capital stock and energy, to produce 
output product. The change in free value dF is also related to the surplus/deficit that a corporation receives for its 
operation, after meeting its obligations. 
 
Substituting in equations 3.2 and 3.7 for change in internal value dU into equation (4.2) we have: 
 

TdsSdTdWTdSdF −−−=  

)( SdTdWdF +−= …………………………..……....4.3 

Finally, we make the assumption that at the actual point of conversion, no change in the trading index T of either inputs 
or outputs occurs. Inputs are either just so before conversion, or instantaneously no longer there immediately after 
conversion; and likewise vice-versa for outputs. Thus for either inputs or outputs the equation reduces to: 
 

PdVdWdF −=−= …………………………………..4.4 

 
Hence for a spontaneous reaction to take place to produce output work dW, consumption of free value dF occurs. This 
process is similar to the iso-trading model at section (3.5) of this paper, where the index of trading value T was also 
constant. However, while in the iso-trading model changes in volume were met by changes in price, in our conversion / 
combustion process reduction in volume of inputs is met by an appropriate creation of product volume, with no change 
in price of either. By substituting in PV=NkT we have: 
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 





−=

V
dVNkTdF ……………………………..……………........4.5 

Hence the free value F available of either an input or output factor is: 

( ) oFVNkTF +−= ln …………………………………………..4.6 

Where Fo is the free value of a factor at its standard state position after our reaction has taken place. Although the 
factors of inputs and output are initially in arbitrary states, according to equation (4.1) however they have to 
combine/react in fixed proportions. Thus we write: 
 

  [ ] [ ] [ ] [ ] [ ] [ ]KDGBLK FzFyFxFcFbFa ++⇔++ ………..…..4.7 
 

And substituting in from equation (4.6) we have: 
 
Free value of outputs = ( )[ ] ( )[ ] ( )[ ]KoDoGo FVNkTzFVNkTyFVNkTx +−++−++− lnlnln  
 
And 
 
Free value inputs = ( )[ ] ( )[ ] ( )[ ]BoLoKo FVNkTcFVNkTbFVNkTa +−++−++− lnlnln  
 
 
Thence the change in free value ∆F accompanying the reaction is the difference between these two: 
 

( )[ ] ( )[ ] etcFVNkTaetcFVNkTxF KoGo −+−−++−=∆ lnln ……………………….……...4.8 
 
In some economic systems, significant values are not ordinarily attached to a residue function and the ecological and 
environmental cost is assumed to be small.  In other economic systems the function is substantial, with the cost of waste 
and/or environmental protection constituting a major deduction against potential benefits. Re-arranging equation (4.8) 
we have: 
 









−∆=∆ c

B
b

L
a

K

z
K

y
D

x
G

o VVV
VVVNkTFF ln …………………………..…….…4.9 

Where ∆Fo is the change in free value accompanying the reaction, when all the reactants and products are in their 
standard states. For mathematical convenience of basing everything on the product G, equation (4.6) is re-written as: 
 

          







−



∆=∆

δβα

τρ

BLK

KDGo

VVV
VVV

NkTx
F

x
F ln ……………………………......4.10 

Where α=a/x, β=b/x, δ=c/x ρ=y/x, and τ=z/x. 
 
Now when the reaction has stopped, the change in free value ∆F becomes zero, consequently from equation (4.10): 

eBLK

KDGo

VVV
VVV

NkTx
F









=∆

δβα

τρ

ln …………………………....………….4.11 

 
Where the subscript e denotes the mix for the system at equilibrium. Since the standard free value change ∆Fo is the 
defined state of unit activity of the mix, it is apparent that ∆Fo must be constant, and it follows that the part of equation 
(4.8) contained in the brackets must be constant too. Thence: 
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ψδβα

τρ

=








eBLK

KDG

VVV
VVV

……………………………………….……..4.12 

Where Ψ may be called the Equilibrium Constant. 
 
Finally by substituting back into (4.9) we have: 
 

ψδβτα

ρ

lnln NkT
VVV

VV
NkTx

F
BLK

DG +







−=∆

−
…….………….………...4.13 

 
And re-arranging: 
 

( )( )ρδβταψ −−∆−





= DBLK

xNkT
F

G VVVVeV ……………………………..4.14 

 
Which is an equation with similarities to the Cobb-Douglas production function, having input and output factors, but 
with an equilibrium constant and a free value disequilibrium function attached to it.  
 
We thus return to the Le Chatelier Principle, a fundamental concept in physical, chemical and biological systems, but 
now defined for economic systems: “If a change occurs in one of the factors under which an economic system is in 
equilibrium, then the system will tend to adjust itself so as to annul as far as possible the effects of that change”. 
 
It can be seen from equation (4.14) that the forward path is favoured by a large free value function away from an 
equilibrium position, plentiful resources, coupled with a small waste function. Clearly, however, an economic system 
for which any of these components was lacking might at some point slow down, unless substitutes were found.   
 
The assumption, in the above analysis, of a fixed level for part of the surplus to meet capital replacement and financial 
obligations (z units of capital stock K) does not have a strong foundation, since surpluses vary in the corporate sector a 
great deal. The principle of its effect on the equilibrium position for the purposes of promoting the forward path is 
however valid.  
 
The dynamic nature of equation (4.14) becomes apparent when the condition of nil trading (constant index of trading 
value) is relaxed and the system is connected to all other adjacent systems in an economy. If one factor is used up - for 
example, product G is sold on to the next system - then the system produces more G. Likewise as a resource B is used 
up, it is replaced from another system, which perceives demand for its product, and so the reaction goes on. We have 
derived an inter-reacting trading process, with free value continually being used up by one system and replaced by 
another. The limits of production will ultimately be set by demand, resource availability, and the ability of systems to 
recycle waste and discarded products. The nature of the processes outlined indicates that it is possible for business 
levels to go down as well as up in the long term. 
 
Economic theory traditionally sets out a two-sided system with producers on one side and consumers on the other, the 
process being circular in nature. The equilibrium process described above, while undoubtedly incorporating such a 
circular process also has a linear dimension, converting resources into products, many of which cannot be re-cycled 
usefully back to the ecological system. In this model consumers are also producers. They invest in and bring up families 
who grow up and become part of the production cycle.  
 
 
4.2 The Business Cycle 
 
 
Physicists and engineers commonly describe the dynamics and efficiencies of a gas system in terms of a thermodynamic 
cycle where, following a compression process, reactants of air and fuel are brought together and ignited to give off heat, 
enabling the gases produced to expand and generate work in excess of that required for compression. Similarly, for an 
economic system, reactants of economic input are consumed and the result transformed into new product output. The 
system uses any excesses generated to procure replacements for factors used up, and any residue/deficit is then turned to 
future growth/decline. 
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A number of cycles have been devised in thermodynamic theory to describe the dynamics and efficiencies of systems, 
but that devised by the French physicist Sadi Carnot (1837-94) is recognised to have the maximum theoretical 
efficiency that can be obtained. The cycle is made up of two Isothermal (Iso-trading) processes and two isentropic 
processes, as at Figure 5.  

  
Figure 5  Carnot cycle 
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In the cycle, inputs enter at process 1-2, and are compressed at process 2-3. In process 3-4 they combust and acquire 
heat value, and at process 4-1 they expand. For a number of reasons, but chiefly because the area inside the P-V 
diagram is very small, implying little work done, the cycle is not thought to be applicable to economic systems. Other 
cycles that have been developed include the Otto cycle (Nikolaus Otto 1832-91), and the Rankine cycle (William 
Rankine 1820-72). 
 
 
4.3 Joule Cycle 
 
To overcome the problems posed by the Carnot cycle, a more practical cycle to use may be the Joule Cycle [named 
after James Joule 1818-89]. In the Joule cycle, constant pressure processes replace the isothermal processes of the 
Carnot cycle. Our economic model therefore now comprises two constant price and two isentropic processes. Figure 6 
illustrates the shape of the cycle: 
 
Figure 6  Joule cycle 
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For a pure corporate/capital economy system, the cycle proposed is as follows: 
 
(1-2) Labour output and materials are inputted. This process is assumed to utilise a constant price process. Opposite 

monetary flows of wages and expenditure on materials occur. 
(2-3) Capital plant is consumed with the above input.  This process is assumed to be isentropic, ∆W = ∆U, with no 

entropic value gain/loss. No cash transfer occurs as capital plant depreciates. 
(3-4) Output of goods occurs. This process is assumed to be at constant price. Opposite monetary flows of 

sales/turnover occurs. 
(4-1) A profit surplus/deficit occurs. This process is assumed to be isentropic, ∆W = ∆U, with no entropic value 

gain/loss. 
 
For a personal sector/labour economy system, the cycle proposed is as follows: 
 
(1-2) Consumption of consumer goods occurs. This process is assumed to utilise a constant price process. Opposite 

monetary flows of consumer expenditure occurs. 
(2-3) Labour is consumed (actually in the corporate sector, but here separated out).  This process is assumed to be 

isentropic, ∆W = ∆U, with no entropic value gain/loss. 
(3-4) Labour output occurs. This process is assumed to be at constant price. Opposite flows of wages occur. 
(4-1) Labour reproduction occurs. This process is assumed to be isentropic, ∆W = ∆U, with no entropic value 

gain/loss. 
 
Rather obviously, a labour intensive economic system is likely to involve more of the latter system that the former, and 
vice-versa for a capital-intensive system, and grossing-up of individual systems to a macro-economic system will thus 
produce a mixed cycle, though the analysis of cycle efficiency criteria and other aspects remains the same. 
 
For an economic system where residue D constitutes a cost factor with ecological and environmental implications, 
account of this could be made by adding a cost to process (1-2), increased capital consumption at process (2-3) or a tax 
and profit deduction at process (4-1). 
 
In most economic systems, because of the nature of the specific processes and technology used, significant parts of 
added value are subcontracted out via bought-out materials and services, to improve efficiency. Once the latter have 
been inputted, the systems then add value to produce output. The effects of these are shown diagrammatically at Figure 
7 - [processes (1-1a) and (3a-4)]: 
 
We now examine a series of efficiency measures. 
 
Figure 7  Subcontract added value and the Joule cycle 
 
 

 

 

 

          

 

     

 
 
4.3.1. Cycle Efficiency 
 
The efficiency of the cycles can be defined in a variety of ways but that known as the Overall Cycle Efficiency η is the 
most common. It is defined as work output less work input all divided by total output value: 
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And by substituting in for constant price and isentropic processes we get: 
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Now from fig (4.3) it can be seen that P3=P4 and P1=P2. Thus we can write: 
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Where µ is the price gain from input to output [a mark-up on costs]. By making substitutions from equation (3.50) of 
this paper for the isentropic process, it can be proved that the overall efficiency of the cycle is given by the equation: 
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Thus the overall efficiency is governed by the price gain achievable, and the isentropic elastic index γ.  Figure 8 shows 
the relationship to price gain: 
 
Figure 8  Cycle efficiency and price gain 
 

 

 

 

 

 

 

 

 
 
 
4.3.2. Growth Factor 
 
In an economic cycle, overall cycle efficiency is not the only criteria to be considered. Attention needs also to be 
focussed also on the net work output, that is: (Work out - Work in) as a fraction of the Work in, which could be called 
the Growth Factor since, in the corporate sector this would be equal to: 
 

(Profit less capital consumption) / Capital consumption  
 

And similarly in the personal sector:  
 

(Labour reproduction – labour consumption) / Labour consumption  
 

Such a criterion would measure the extent to which a system is able to abstract value to enable it to replace and increase 
its productive resources. In algebraic terms the Growth Factor φ is equal to: 
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And, by a similar process of algebraic manipulation to that used to derive the overall cycle efficiency η, it can be proved 
that: 
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Thus the Growth Factor φ is a function of the price gain µ from input to output, the isentropic elastic index γ, and the 
overall cycle index of trading value gain (T4/T2), from input to output, the latter being a function of the structure of the 
system. A vertically integrated cycle is likely to have a high value of (T4/T2). Figure 9 shows the relationship of the 
Growth Factor to price gain: 
 
It will be noted that φ varies in an inverse way to the overall cycle efficiency. 
 
By combining equations (4.18) and (4.19) the two criteria are related in the form: 
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Figure 9  Growth factor and price gain 
 
 

 

 

 

 

 

   

 
 

There is therefore a trade-off of overall cycle efficiency against improvements in growth and the degree of vertical 
integration (T4/T2). The effect of this is illustrated at Figure 10: 
 
Figure 10 Growth factor and cycle efficiency 
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4.3.3. Entropy Gain 
 
Finally, for the Joule Cycle, we can calculate the entropy gain. Since there is no change in entropy at processes 2-3 and 
4-1 (they are isentropic), entropy change occurs only at processes 3-4 and 1-2. Thus the entropy change for the cycle is 
given as: 

)()( 1234 SSSSScycle −+−=∆ ...............………….........4.21 
 

Substituting in for constant price processes for entropy gain (equation (3.25) we have: 
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And by substituting in equation (3.50) for the isentropic relationships and remembering that  
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Thus the entropy gain at one part of the cycle is wholly retrieved at the other, and the Joule Cycle is therefore 
reversible. 
 
The real world, however, is one where inflation and a state of irreversibility is the norm. The isentropic processes (4-1) 
and (2-3) therefore become polytropic in nature and are replaced with PVn=C. As before we summate the net entropy 
change for the cycle, which this time becomes: 
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And substituting for each process: 
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Which, after accounting for all four terms, reduces to: 
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And from equations (3.45) & (3.46) we can then write: 
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Thus entropy change through the cycle is proportional to logarithmic changes in price and volume through the cycle.  
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5. MONEY 

It will be recalled from equation (2.10) that the ideal equation for a money system was given by: 
 

NkTPV= ................................................................5.1 
 

This is a re-statement of the general quantity theory of money pY=MV, where p is price level in an economic system, Y 
is output in volume terms, M is the quantity of money and V is the velocity of circulation. While the left-hand sides of 
the equations are comparable, the right-hand side requires additional clarification. When referring to a quantity of 
money an economist is really referring to a numerical amount multiplied by a nominal value (£1, $1 or whatever) and in 
equation (5.1) this equal to Nk. Thus to obtain an exact comparison with the quantity theory, equation (5.1) can be 
written as: 
 

    [ ]TNkPV= ..................................................…......5.2 
 

where the velocity of circulation in a money system is equivalent to the index of trading value T in a thermodynamic 
system. To avoid any confusion concerning the use of algebraic symbols the quantity theory equation pY=MV is 
dispensed with in this paper. 
 
A particular point to note with a monetary model is that the velocity of circulation, calculated as output in value terms 
divided by money supply, does carry a connotation of value too, since the nominal value k is unchanging. Thus if the 
number of notes or instruments in circulation remains constant, when output price P and output volume V are each 
changing in some fashion, then the changes in P and V are reflected in a change in the velocity of circulation T. As 
pointed out all through this paper T therefore carries value as well as volume. This is not to say of course that the 
number of money instruments N necessarily remains the same. Thus there are four variables to consider, and in 
differential form equation (5.2) can be written as: 
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A possible means of simplifying the analysis is to divide output volume V by nominal money supply units N. Let v = 
V/N, the Specific Volume, as per equations 2.8 and 2.10. While the specific volume v is not a constant, it will however 
incorporate technical trends, such as scalar changes in an economy and the amount of money required to fund it, 
changes in the type of monetary instruments in use, such as electronic money, and separate out the relative velocities of 
different kinds of money, from cash to securities. Thus equation (5.2) becomes: 
 
      kTvP = .....………...............……………..……...5.4 
 
And differentiating, and dividing by [Pv=kT] we have: 
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Figure 11 illustrates the relationships between the three factors. 
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Figure 11  Velocity of circulation, price and specific volume  
 
 

 

 

 

 

 

 

A change in velocity of circulation can arise either from a change in output price, or a change in the specific volume. 
And no change in the velocity of circulation will occur if a change in output price is balanced by an equivalent change 
in the specific volume.  
 
Thus far, we have not derived any specific relationship between each of the variables, only that changes in one or more 
will be reflected by changes to the others. To deduce specific effects of particular changes to one or more variables, 
however, the relationships between the variables need to be defined.  
 
For example, the Inventory Theoretic Model of money depicts money demand as being a function of output and a 
negative function of interest rates, and that changes in interest rates and money supply will therefore have an effect on 
investment and output. Accepted economic theory also takes into account such effects as the limitations on output and 
pressure on costs posed by constrictions in factors of production and international trade, though the latter effects are not 
owing to specific monetary factors.  
 
It will be recalled at equations (3.11) and (3.12) of this paper that the concept of specific value Cv was introduced, being 
a function of the degrees of value ω that a carrier of value could carry (Cv=ωk). Thus Cv represents the amount of value 
required to sustain a rise in the index of trading value (here the velocity of circulation), for a single carrier of value. To 
sustain a rise in the velocity of circulation, however, implies that all future value per carrier of value must also rise. This 
has similarities to the concept of discounted cash flow. Thus, for example, the net present value of a stream of income k 
per period per unit of currency, discounted at a rate of return or yield of σ per period is equal to: 
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For a discount period to ∞, this expression reduces to [NPV=k/σ]. While most values of this kind do not of course 
involve a stream of income to ∞, the principle nevertheless remains valid.  
 
We can suppose therefore that our Value Capacity Coefficient ω might be inversely related to some rate of return or 
yield r (not necessarily equal to σ), representative of the particular compass of carriers of value under consideration. 
Thus: 
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Again, we have not made any assumption concerning the specific relationships between each of the three variables P, v 
and T. While it is a matter of evidence as to what specific relationships are involved in a total economic system, we 
could get round this by making the assumption that the output price - specific volume relationship is of a polytropic 
form, Pvn = C, that is, no special relationship such as constant price, constant volume or isentropic cases is assumed. On 
this basis, from equation (3.43), the differential form of any change in entropy may be presented as: 
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And substituting in from equation (5.8) we have: 
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It will be recalled also that for an isentropic process where dS=0, the expression in the brackets is equal to zero, and the 
value of n reduces to γ, where γ=(ω+1)/ω. Thus by substitution of r=1/ω, the value of n reduces to: 
 

)1( rn +== γ …………….……..….5.11 
 

Thus for an isentropic process the elastic index γ is stated to be a function of the rate of return or yield r. 
 
Proceeding further and reverting back to the polytropic form, suppose that the rate of return is held at some value i other 
than r, such that the elastic index n = (1+i), then the differential expression for entropy change (5.10) reduces to: 
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Thus if the rate i is held below the rate of return r, the expression becomes negative and entropy is abstracted from the 
system. Likewise if the rate i is above the rate of return r, the expression becomes positive, with entropy being 
generated. Three differential expressions for the change in entropy can therefore be constructed, in terms of the changes 
in velocity of circulation T, the specific volume v and the price P of output:  
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For an isentropic process where i=r, each expression equals zero and no entropy change occurs. 
 
Comparing these equations to equation 3.44, 3.45 and 3.46 for the polytropic process, it can be seen that the following 
equations would result: 
 

( )
v
dvi

P
dP

+−= 1 ……………………………5.16 

T
dT

i
i

P
dP







 +

=
1

…………………..…….…5.17 

( )
v
dvi

T
dT

−= ………………………………...5.18 

 
Thus linking the three factors P, v and T to the rate i. 
 
The above thermodynamic analysis, if accepted, indicates that the rate of return, yield and interest rates might might 
alter the elastic index n and have an impact in determining whether changes in the price level in an economy are 
reflected by changes in real productive content or by generation/absorption of entropic value. However, without 
empirical research, the above hypothesis cannot be tested. 
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6. Measurement of Value 
 
In both thermodynamic and economic systems, measurement of the values of variables is a field of research in itself, 
which this paper does not explore in depth. There are however some common threads. 
 
In a thermodynamic system, only three primary properties are directly measurable – unit mass, length and time, and 
from these it is possible to measure volume, force and pressure. All other variables are derived at a secondary or tertiary 
level. Density is measured by mass per volume. A scale of temperature can be constructed by reference to the variation 
of volume of a fluid between two fixed points, for example the boiling and freezing points of water. Items such as the 
gas constant and entropy are more distantly estimated. The properties of real gases can depart from the model of an 
‘ideal’ gas. 
 
Similarly in an economic system, the same primary properties apply, though with different emphases. Volume is 
measured by reference to units with specific shape, form and use; price by reference to a single unit with specific shape, 
form and use set against a scale of money. k in a money system is a nominal value, defined as £1, $1, 1€ etc. With 
varying degrees of accuracy it is possible to measure the number of money stock units N. Velocity of circulation is thus 
assessable with reference to output at current prices. Measurement of a property such as entropy depends upon the 
degree to which changes in price levels can be split into those arising from real productive content and output, and those 
that do not. Items such as elasticity and utility are more distantly estimated. The properties of real economic systems are 
likely to depart from the notion of an ‘ideal’ economic system. 
 
Thus in both disciplines, a few variables are easily quantifiable, but others are not. In each discipline participants are 
therefore forced to work mostly with the quantifiable variables to explain and derive the others.  
 
In science, three items of information are required to specify a scale against which a variable is to be measured: 

• A reference body to measure against 
• The numbers attached to two or more standard points of such a scale 
• The relationship between the variable to be measured and the particular property of the reference body, which 

is to be used to interpolate between the standard points. 
 
In economics, value is not arrived at by such deterministic methods. It is determined in part by the confidence held in 
individual economies and currencies, with interest rates being the main lever on the money supply to hold prices at 
stable levels. It is determined by man-hours and the costs associated with the varieties of materials, energy and 
technologies inputted into products. It is also determined by entropic input, that is, value that cannot convert into real 
productive content during a particular process, i.e. speculation, scarcity or abundance. Thus value in economics is 
determined via circular, iterative processes, comparing individual prices and products with everything else, it is as much 
‘top-down’ as ‘bottom-up’. 
 
It might be thought that a possible way round this problem is to base everything against an ‘energy’ scale, in the manner 
of ‘emergy’. In recent years attempts have been made to calculate the energy content of some resources, but the 
problem with this approach is that it cannot take account of the relative entropic value that is embedded in price levels 
in an economy. Hau and Bakshi (2004) point also to problems arising from quantification, transformities and allocation 
between processes in relation to emergy.  
 
It has been shown in this paper, that the internal value U of a product or factor of production can carry isentropic value 
as well as productive content, and accords with the view of Georgescu-Roegen (1979) that the entropy law is important. 
The reality is that money can only be set against other measures of value such as emergy if a monetary system can be 
constrained to operate isentropically, such that price always refers back to the nominal value k.  
 
Economics is essentially anthropocentric in nature rather than ecocentric, and the general replacement of money with 
emergy or some other scale entails also the populace getting to grips with the concept of entropy and ecocentric matters. 
The author does not regard this as practical. 
 
 
7. Summary and Conclusion 
 
In writing this paper the author has had to re-think some of his views first set out in his paper of 1982, more than twenty 
years ago, particularly in areas such as entropy value, productive content, cycle construction and growth. The thrust of 
this paper has been to lay out in detail, step by step, equivalent economic properties against each thermodynamic 
concept as applied to gases, though it is recognised that this approach might be seen as controversial.  
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The starting point of the exposition, and by far the most important, was the introduction of the concepts of ‘monetary 
carriers of value’ and ‘index of trading value’. These concepts enabled the construction of an ideal economic equation 
that matched the ideal gas equation for thermodynamic gas systems, and which suggested that value in an economic 
system might be equivalent to heat value in a thermodynamic system. Models constructed to meet the processes 
encountered in economic systems, such as money, shares and production all followed a similar pattern. This led to the 
belief that some credence could be attached to the results of applying thermodynamic laws to economic processes. 
 
A number of economic processes were examined to obtain expressions for relationships between price, volume and the 
index of trading value, and entropy change. It was shown that the law of diminishing marginal utility matched a 
thermodynamic formula for marginal entropic value for an iso-trading process. The Le Chatelier Principle was 
employed to model the disequilibrium processes that govern the forward path of an economic system, and how capital, 
labour and resources are consumed to produce output. The algebraic logic led to output being expressed as an equation 
along the lines of a Cobb-Douglas function, but with an equilibrium constant and a free value disequilibrium function 
attached to it. 
 
Following on from this an economic trade cycle was constructed, based a Joule cycle, and expressions were derived for 
the overall cycle efficiency, growth factor and entropic gain. It was shown that a cycle could be constructed which did 
not have an entropic gain, but it was recognised that the reality of economic systems and the laws of thermodynamics 
meant that such a position might be unlikely.  
 
A simple money model was constructed to highlight the application of thermodynamic principles. It was very similar in 
construction to the well-known quantity theory, with velocity of circulation being equivalent to the index of trading 
value. The close nature of the comparison led to the belief that thermodynamic analysis for a polytropic case might 
yield a means of linking changes in price, output volume, money stock and velocity of circulation with the rate of return 
through the elastic index, though empirical research is needed to test the hypothesis of the comparison. 
 
Last some thought was given to the measurement of value. The disciplines of thermodynamics and economics both rely 
on the ready measurement of only a few variables, with the rest being derived. Value in economic systems is composed 
of both real productive content and entropic value, and the application of a scale of energy, along the lines of emergy, 
will not by itself provide an answer to the problem of determining value, unless an economic system can be constrained 
to operate isentropically.  
 
The conclusion that economic and thermodynamic theories may be linked is, in the author’s view, born out to a certain 
degree by the analysis, but significant research in the future, at both theoretical and empirical levels, is required to add 
substance to the theory. 
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